Baca, Ingat, Ulang! #thinKimia

BAB I STRUKTUR ATOM

a. Partikel dasar : partikel-partikel pembentuk atom yang terdiri dari elektron, proton den neutron.
  1. Proton : partikel pembentuk atom yang mempunyai massa sama dengan satu sma (amu) dan bermuatan +1. 
  2. Neutron : partikel pembentuk atom yang bermassa satu sma (amu) dan netral. 
  3. Elektron : partikel pembentuk atom yang tidak mempunyai massa dan bermuatan -1.
b. Nukleus : Inti atom yang bermuatan positif, terdiri dari proton den neutron. c. Notasi unsur : zA A dengan X : tanda atom (unsur)

Z : nomor atom = jumlah elektron (e)
= jumlah proton (p)

A : bilangan massa = jumlah proton + neutron
d. Atom tak netral : atom yang bermuatan listrik karena kelebihan atau kekurangan elektron bila dibandingkan dengan atom netralnya. Atom bermuatan positif bila kekurangan elektron, disebut kation. Atom bermuatan negatif bila kelebihan elektron, disebut anion. e. Isotop : unsur yang nomor atomnya sama, tetapi berbeda bilangan massanya. f. Isobar : unsur yang bilangan massanya sama, tetapi berbeda nomor atomnya. g. Isoton : unsur dengan jumlah neutron yang sama. h. Iso elektron: atom/ion dengan jumlah elektron yang sama. Contoh: Na+ dengan Mg2+              K+ dengan Ar
1. Model Atom Dalton
John Dalton mengemukakan hipotesa tentang atom berdasarkan hukum kekekalan massa (Lavoisier) dan
hukum perbandingan tetap (Proust).
Teori yang diusulkan Dalton:
a. Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi.
b. Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda.
c. Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen.
d. Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.
Hipotesa Dalton digambarkan dengan model atom sebagai bola pejal seperti ada tolak peluru.
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan
listrik. Bagaimana mungkin suatu bola pejal dapat menghantarkan listrik, padahal
listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat
menyebabkan terjadinya daya hantar listrik.
2. Model Atom Thomson
Kelemahan dari Dalton diperbaiki oleh JJ. Thomson, eksperimen yang dilakukannya tabung sinar kotoda. Hasil eksperimennya menyatakan ada partikel bermuatan negatif dalam atom yang disebut elektron. Thomson mengusulkan model atom seperti roti kismis atau kue onde-onde. Suatu bola pejal yang permukaannya dikelilingi elektron dan partikel lain yang bermuatan positif sehingga atom bersifat netral. Kelemahan model Thomson ini tidak dapat menjelaskan susunan muatan positifdan negatif dalam bola atom tersebut.
3. Model Atom Rutherford
Eksperimen yang dilakukan Rutherford adalah penembakan lempeng tipis dengan partikel alpha. Ternyata
partikel itu ada yang diteruskan, dibelokkan atau dipantulkan. Berarti di dalam atom terdapat susunan susunan
partikel bermuatan positif dan negatif. Hipotesa dari Rutherford adalah atom yang tersusun dari
inti atom dan elektron yang mengelilinginya. Inti atom bermuatan positif dan massa atom terpusat pada inti atom. Model atom Rutherford seperti tata surya
Kelemahan dari Rutherford tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan teori fisika, gerakan elektron mengitari inti ini disertai pemancaran energi sehingga lama - kelamaan energi elektron akan berkurang dan lintasannya makin lama akan mendekati inti dan jatuh ke dalam
inti.
4. Model Atom Niels Bohr
Kelemahan dari Rutherford diperbaiki oleh Niels Bohr dengan percobaannya menganalisa spektrum warna dari atom hidrogen yang berbentuk garis.
Hipotesis Bohr adalah;
a. Atom terdiri dari inti yang bermuatan positif dan dikelilingi oleh elektron
yang bermuatan negatif di dalam suatu lintasan.
b. Elektron dapat berpindah dari satu lintasan ke yang lain dengan menyerap
atau memancarkan energi sehingga energi elektron atom itu tidak akan
berkurang. Jika berpindah lintasan ke lintasan yang lebih tinggi maka elektron akan
menyerap energi. Jika beralih ke lintasan yang lebih rendah maka akan
memancarkan energi.
Kelebihan atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat
berpindahnya elektron.
Kelemahan model atom ini adalah: tidak dapat menjelaskan spekrum warna dari
atom berelektron banyak. Sehingga diperlukan model atom yang lebih sempurna
dari model atom Bohr.
BAB II
SISTEM PERIODIK UNSUR

1. Hukum Triade Dobereiner

Pada tahun 1829, Johan Wolfgang Dobereiner, seorang professor kimia di Jerman, mengemukakan bahwa massa atom relatif Strontium sangat dekat dengan massa rata-rata dari dua unsur lain yang mirip dengan strontium, yaitu Kalsium dan Barium. Dobereiner juga menemukan beberapa kelompok unsur lain seperti itu. Karena itu, Dobereiner mengambil kesimpulan bahwa unsur-unsur dapat dikelompokkan ke dalam kelompok-kelompok tiga unsur yang disebutnya Triade. Akan tetapi, Dobereiner belum berhasil menunjukkan cukup banyak triade sehingga aturan tersebut bermanfaat.
Penggambaran Triade Doberainer adalah sebagai berikut :
TRIADE Ar Rata-rata Unsur ditengah
Kalsium 40
Stronsium ?
Barium 137
Meskipun gagasan yang dikemukakan oleh Dobereiner selanjutnya gugur (tidak berhasil), tetapi hal tersebut merupakan upaya yang pertama kali dilakukan dalam menggolongkan unsur.

2.   Hukum Oktaf Newlands

Pada tahun 1866, John A.R Newlands seorang ahli kimia berkebangsaan Inggris mengemukakan bahwa unsur-unsur yang disusun berdasarkan urutan kenaikan massa atomnya mempunyai sifat yang akan berulang tiap unsur kedelapan. Artinya, unsur pertama mirip dengan unsur kedelapan, unsur kedua mirip dengan unsur kesembilan, dan seterusnya.
Sifat keperiodikan unsur berdasarkan urutan kenaikan massa atom setiap kelipatan delapan dinamakan hukum oktaf. Saat itu, baru ditemukan 60 unsur. Gas mulia tidak termasuk dalam pengelompokan sistem oktaf karena belum ditemukan .
Berikut ini disampaikan pengelompokan unsur berdasarkan hukum oktaf Newlands, yaitu sebagai berikut :
H F Cl Co/Ni Br Pd I Pt
Li Na K Cu Rb Ag Cs Tl
Be Mg Ca Zn Sr Cd Ba/V Pb
B Al Cr Y Ce/La U Ta Th
C Si Ti In Zr Sn W Hg
N P Mn As Di/Mo Sb Nb Bi
O S Fe Se Ro/Ru Te Au Os
Beberapa unsur ditempatkan tidak urut sesuai massanya dan terdapat dua unsur yang ditempatkan di kolom yang sama karena kemiripan sifat.

3. Sistem Periodik Mendeleyev

Pada tahun 1869, Dmitri Ivanovich Mendeleyev seorang ahli kimia berkebangsaan Rusia menyusun 65 unsur yang sudah dikenal pada waktu itu. Mendeleev mengurutkan unsur-unsur berdasarkan kenaikan massa atom dan sifat kimianya.
Pada waktu yang sama, Julius Lothar Meyer membuat susunan unsur-unsur seperti yang dikernukakan oleh Mendeleyev. Hanya saja, Lothar Meyer menyusun unsur-unsur tersebut berdasarkan sifat fisiknya. Meskipun ada perbedaan, tetapi keduanya menghasilkan pengelompokan unsur yang sama.
Mendeleyev menyediakan kotak kosong untuk tempat unsur-unsur yang waktu itu belum ditemukan, seperti unsur dengan nomor massa 44, 68, 72, dan 100. Mendeleyev telah meramal sifat-sifat unsur tersebut dan ternyata ramalannya terbukti setelah unsur-unsur tersebut ditemukan. Susunan unsur-unsur berdasarkan hukum Mendeleev disempurnakan dan dinamakan sistem periodik Mendeleyev.
Sistem periodik Mendeleev terdiri atas golongan (unsur-unsur yang terletak dalam satu kolom) dan periode (unsur-unsur yang terletak dalam satu baris). Tabel sistem periodik Mendeleyev yang dibuat adalah sebagai berikut :
Periode Gol.I Gol.II Gol.III Gol.IV Gol.V Gol.VI Gol.VII Gol.VIII
1 H 1






2 Li 7 Be 9,4 B 11 C 12 N 14 O 16 F 19
3 Na 23 Mg 24 Al 27,3 Si 28 P 31 S 32 C 35,5
4 K 39 Ca 40 ? (44) Ti 48 V 51 Cr 52 Mn 55 Fe 56, Co 59







Ni 59, Cu 63
5 Cu 63 Zn 65 ? (68) ? (72) As 75 Se 78 Br 80
6 Rb 86 Sr 87 ?Yt 88 Zr 90 Nb 94 Mo 96 ? (100) Ru 104, Rh 104







Pd 106, Ag 108
7 Ag 108 Cd 112 In 115 Sn 118 Sb 122 Te 125 I 127 ?
8 Cs 133 Ba 137 ?Di 138 ?Ce 140 ? ? ?
9 ? ? ? ? ? ? ?
10 ? ? ?Er 178 ?La 180 Ta 182 W 184 ? Os 195, Ir 197
11 Au 199 Hg 200 Tl 204 Pb 207 Bi 208 ? ? Pt 198, Au 199
12 ? ? ? Th 231 ? U 240 ?

4. Pengelompokan Unsur Berdasarkan Sistem Periodik Modern

Sistem periodik Mendeleyev dikemukakan sebelum penemuan teori struktur atom, yaitu partikel-partikel penyusun atom. Partikel penyusun inti atom yaitu proton dan neutron, sedangkan elektron mengitari inti atom. Setelah partikel-partikel penyusun atom ditemukan, ternyata ada beberapa unsur yang mempunyai jumlah partikel proton atau elektron sama, tetapi jumlah neutron berbeda. Unsur tersebut dikenal sebagai isotop. Jadi, terdapat atom yang mempunyai jumlah proton dan sifat kimia sama, tetapi massanya berbeda karena massa proton dan neutron menentukan massa atom.
Dengan demikian, sifat kimia tidak ditentukan oleh massa atom, tetapi ditentukan oleh jumlah proton dalam atom tersebut. Jumlah proton digunakan sebagai nomor atom unsur dan unsur- unsur disusun berdasarkan kenaikan nomor atom.
Ternyata, kenaikan nomor atom cenderung diikuti dengan kenaikan massa atomnya.
Keperiodikan sifat fisika dan kimia unsur disusun berdasarkan nomor atomnya. Pernyataan tersebut disimpulkan berdasarkan hasil percobaan Henry Moseley pada tahun 1913. Sistem periodik yang telah dikemukakan berdasarkan percobaan Henry Moseley merupakan sistem periodik modern dan masih digunakan hingga sekarang.
Sistem periodik unsur modern merupakan modifikasi dari sistem periodik Mendeleyev. Perubahan dan penyempumaan dilakukan terhadap sistern periodik Mendeleyev terutama setelah penemuan unsur-unsur gas mulia. Mendeleyev telah meletakan dasar-dasar yang memungkinkan untuk perkembangan sistem periodik unsur.

5. Golongan dan Periode Unsur dalam Tabel Sistem Periodik Unsur Modern

Unsur-unsur dalam tabel sistem periodik modern disusun berdasarkan kenaikan nomor atom. Karena sistem periodik yang disusun berbentuk panjang, maka tabel periodik yang sekarang ini disebut tabel periodik panjang. Terkadang disebut pula tabel periodik modern, dikarenakan disusun oleh konsep-konsep yang sudah modern.
Berbeda dengan tabel periodik Mendeleyev, karena berbentuk pendek, maka sering disebut sistem periodik pendek. Pada sistem periodik bentuk panjang, sifat unsurnya merupakan fungsi periodik dari nomor atomnya. Hal ini berarti bahwa sifat unsur tergantung dari nomor atomnya.
Pada tabel periodik bentuk panjang, juga dikenal istilah periode dan golongan. Penyusunan unsur dengan arah mendatar ke kanan disebut periode, sedangkan penyusunan unsur dengan arah ke bawah disebut golongan. Tabel periodik bentuk panjang terdiri atas 7 periode dan 8 golongan. Adapun tampilan fisik tabel Sistem Periodik Modern, adalah sebagai berikut:
Periode dibedakan menjadi periode pendek dan periode panjang, sedangkan golongan dibedakan menjadi golongan A (golongan utama) dan golongan B (golongan transisi). Periode pendek mencakup periode 1 (terdiri dari 2 unsur), periode 2 (terdiri dari 8 unsur) dan periode 3 (terdiri dari 8 unsur). Sedangkan periode panjang mencakup periode 4 sampai dengan periode 7.

a. Golongan

Golongan unsur pada sistem periodik unsur modern disusun berdasarkan jumlah elektron valensi (elektron yang terletak pada kulit terluar). Unsur dalam satu golongan mempunyai sifat yang cenderung sama dan ditempatkan dalam arah vertikal (kolom).
Pada sistem periodik unsur modern, golongan dibagi menjadi 18 berdasarkan aturan IUPAC. Berdasarkan aturan Amerika, sistem periodik unsur modern dibagi dua golongan yaitu golongan A dan B. Jadi, golongan unsur dari kiri ke kanan ialah IA, IIA, 11113, IVB, VB, VIB, VIIB, VIIIB, IB, 1113, IIIA, IVA, VA, VIA, VIIA, dan VIIIA. Umumnya, digunakan pembagian golongan menjadi A dan B.
Golongan unsur pada sistem periodik unsur modern mempunyai nama khusus yaitu sebagai berikut :
Golongan Nama Khusus Unsur-unsur
IA 1 Alkali Li, Na, K, Rb, Cs, dan Fr
IIA 2 Alkali Tanah Be, Mg, Ca, Sr, Ba, dan Ra
IIIA 13 Boron B, Al, Ga, In, dan Tl
IVA 14 Karbon C, Si, Ge, Sn, dan Pb
VA 15 Nitrogen N, P, As, Sb, dan Bi
VIA 16 Oksigen O, S, Se, Te, dan Po
VIIA 17 Halogen F, Cl, Br, I, dan At
VIIIA 18 Gas Mulia He, Ne, Ar, Kr, Xe, dan Rn

b. Periode

Periode unsur pada sistem periodik unsur modem disusun dalam arah horisontal (baris) untuk menunjukkan kelompok unsur yang mempunyai jumlah kulit sama.
Sistem periodik bentuk panjang terdiri atas 7 periode sebagai berikut :
1)        Periode 1 = periode sangat pendek berisi 2 unsur, yaitu H dan He
2)        Periode 2 = periode pendek berisi 8 unsur
3)        Periode 3 = periode pendek berisi 8 unsur
4)        Periode 4 = periode panjang berisi 18 unsur
5)        Periode 5 = periode panjang berisi 18 unsur
6)        Periode 6 = periode sangat panjang berisi 32 unsur
7)        Periode 7 = periode yang unsur-unsurnya belum lengkap berisi 30 unsur
Pada periode 6 termasuk periode sangat panjang, yaitu berisi 32 unsur.
Golongan IIIB periode 6 berisi 14 unsur dengan sifat mirip yang dinamakan golongan lantanida.
Begitu juga golongan IIIB periode 7 berisi 14 unsur dengan sifat mirip dinamakan golongan aktinida.
Unsur golongan aktinida dan lantanida biasanya dituliskan terpisah di bawah. Golongan lantanida dan aktinida disebut golongan transisi dalam.

6. Penetapan Golongan dan Periode

Golongan dan periode dapat ditentukan dengan cara menuliskan konfigurasi elektron. Konfigurasi elektron adalah penataan elektron dalarn atom yang ditentukan berdasarkan jumlah elektron.
Pada konfigurasi elektron, jumlah elektron valensi menunjukkan nomor golongan, sedangkan jumlah kulit yang sudah terisi elektron (n terbesar) menunjukkan periode.
BAB III   IKATAN KIMIA Definisi Ikatan Kimia adalah ikatan yang terjadi antar atom atau antar molekul dengan cara sebagai berikut : a) atom yang 1 melepaskan elektron, sedangkan atom yang lain menerima elektron (serah terima elektron) b) penggunaan bersama pasangan elektron yang berasal dari masing-masing atom yang berikatan c) penggunaan bersama pasangan elektron yang berasal dari salah 1 atom yang berikatan. Tujuan pembentukan ikatan kimia adalah agar terjadi pencapaian kestabilan suatu unsur. Elektron yang berperan pada pembentukan ikatan kimia adalah elektron valensi dari suatu atom/unsur yang terlibat. Salah 1 petunjuk dalam pembentukan ikatan kimia adalah adanya 1 golongan unsur yang stabil yaitu golongan VIIIA atau golongan 18 (gas mulia). Maka dari itu, dalam pembentukan ikatan kimia; atom-atom akan membentuk konfigurasi elektron seperti pada unsur gas mulia. Unsur gas mulia mempunyai elektron valensi sebanyak 8 (oktet) atau 2 (duplet, yaitu atom Helium). #Lambang Lewis adalah lambang atom yang dilengkapi dengan elektron valensinya. •Lambang Lewis gas mulia menunjukkan 8 elektron valensi (4 pasang). •Lambang Lewis unsur dari golongan lain menunjukkan adanya elektron tunggal (belum berpasangan). Berdasarkan perubahan konfigurasi elektron yang terjadi pada pembentukan ikatan, maka ikatan kimia dibedakan menjadi 4 yaitu : ikatan ion, ikatan kovalen, ikatan kovalen koordinat / koordinasi / dativ dan ikatan logam.
1). Ikatan Ion ( elektrovalen ) o Terjadi jika atom unsur yang memiliki energi ionisasi kecil/rendah melepaskan elektron valensinya (membentuk kation) dan atom unsur lain yang mempunyai afinitas elektron besar/tinggi menangkap/menerima elektron tersebut (membentuk anion). o Kedua ion tersebut kemudian saling berikatan dengan gaya elektrostatis (sesuai hukum Coulomb). o Unsur yang cenderung melepaskan elektron adalah unsur logam sedangkan unsur yang cenderung menerima elektron adalah unsur non logam. Senyawa yang mempunyai ikatan ion antara lain : a) Golongan alkali (IA) [kecuali atom H] dengan golongan halogen (VIIA) Contoh : NaF, KI, CsF b) Golongan alkali (IA) [kecuali atom H] dengan golongan oksigen (VIA) Contoh : Na2S, Rb2S,Na2O c) Golongan alkali tanah (IIA) dengan golongan oksigen (VIA) Contoh : CaO, BaO, MgS Sifat umum senyawa ionik : 1) Titik didih dan titik lelehnya tinggi 2) Keras, tetapi mudah patah 3) Penghantar panas yang baik 4) Lelehan maupun larutannya dapat menghantarkan listrik (elektrolit) 5) Larut dalam air 6) Tidak larut dalam pelarut/senyawa organik (misal : alkohol, eter, benzena) 2). Ikatan Kovalen o Adalah ikatan yang terjadi karena pemakaian pasangan elektron secara bersama oleh 2 atom yang berikatan. o Ikatan kovalen terjadi akibat ketidakmampuan salah 1 atom yang akan berikatan untuk melepaskan elektron (terjadi pada atom-atom non logam). o Ikatan kovalen terbentuk dari atom-atom unsur yang memiliki afinitas elektron tinggi serta beda keelektronegatifannya lebih kecil dibandingkan ikatan ion. o Atom non logam cenderung untuk menerima elektron sehingga jika tiap-tiap atom non logam berikatan maka ikatan yang terbentuk dapat dilakukan dengan cara mempersekutukan elektronnya dan akhirnya terbentuk pasangan elektron yang dipakai secara bersama. o Pembentukan ikatan kovalen dengan cara pemakaian bersama pasangan elektron tersebut harus sesuai dengan konfigurasi elektron pada unsur gas mulia yaitu 8 elektron (kecuali He berjumlah 2 elektron). Ada 3 jenis ikatan kovalen : a). Ikatan Kovalen Tunggal
b). Ikatan Kovalen Rangkap Dua
c). Ikatan Kovalen Rangkap Tiga
3). Ikatan Kovalen Koordinasi / Koordinat / Dativ / Semipolar
Adalah ikatan yang terbentuk dengan cara penggunaan bersama pasangan elektron yang berasal dari salah 1 atom yang berikatan [Pasangan Elektron Bebas (PEB)], sedangkan atom yang lain hanya menerima pasangan elektron yang digunakan bersama.
o Pasangan elektron ikatan (PEI) yang menyatakan ikatan dativ digambarkan dengan tanda anak panah kecil yang arahnya dari atom donor menuju akseptor pasangan elektron.
4). Ikatan Logam
Adalah ikatan yang terbentuk akibat adanya gaya tarik-menarik yang terjadi antara muatan positif dari ion-ion logam dengan muatan negatif dari elektron-elektron yang bebas bergerak.
Atom-atom logam dapat diibaratkan seperti bola pingpong yang terjejal rapat 1 sama lain.
Atom logam mempunyai sedikit elektron valensi, sehingga sangat mudah untuk dilepaskan dan membentuk ion positif.
Maka dari itu kulit terluar atom logam relatif longgar (terdapat banyak tempat kosong) sehingga elektron dapat berpindah dari 1 atom ke atom lain.
Mobilitas elektron dalam logam sedemikian bebas, sehingga elektron valensi logam mengalami delokalisasi yaitu suatu keadaan dimana elektron valensi tersebut tidak tetap posisinya pada 1 atom, tetapi senantiasa berpindah-pindah dari 1 atom ke atom lain.
Elektron-elektron valensi tersebut berbaur membentuk awan elektron yang menyelimuti ion-ion positif logam.
Struktur logam seperti gambar di atas, dapat menjelaskan sifat-sifat khas logam yaitu :
a). berupa zat padat pada suhu kamar, akibat adanya gaya tarik-menarik yang cukup kuat antara elektron valensi (dalam awan elektron) dengan ion positif logam.
b). dapat ditempa (tidak rapuh), dapat dibengkokkan dan dapat direntangkan menjadi kawat. Hal ini akibat kuatnya ikatan logam sehingga atom-atom logam hanya bergeser sedangkan ikatannya tidak terputus.
c). penghantar / konduktor listrik yang baik, akibat adanya elektron valensi yang dapat bergerak bebas dan berpindah-pindah. Hal ini terjadi karena sebenarnya aliran listrik merupakan aliran elektron.
BAB IV
STOIKIOMETRI
1). Hukum Kekekalan Massa ( Hukum Lavoisier ).
Yaitu : “Dalam sistem tertutup, massa zat sebelum dan sesudah reaksi adalah sama.”
Contoh :
40 gram Ca + 16 gram O2 = 56 gram CaO
12 gram C + 32 gram O2 = 44 gram CO2
Contoh soal :
Pada wadah tertutup, 4 gram logam kalsium dibakar dengan oksigen, menghasilkan kalsium oksida. Jika massa kalsium oksida yang dihasilkan adalah 5,6 gram, maka berapa massa oksigen yang diperlukan?
Jawab :
m Ca = 4 gram
m CaO = 5,6 gram
m O2 = ..?
Berdasarkan hukum kekekalan massa :
Massa sebelum reaksi = massa sesudah reaksi
m Ca + m O2 = m CaO
m O2 = m CaO - m Ca
= (5,6 – 4,0) gram
= 1,6 gram
Jadi massa oksigen yang diperlukan adalah 1,6 gram.
2). Hukum Perbandingan Tetap ( Hukum Proust ).
Yaitu : “Perbandingan massa unsur-unsur dalam suatu senyawa adalah tertentu dan tetap.”
Contoh : perhatikan contoh soal 5.1 dari Buku Paket 1A halaman 151-152!
Contoh lain :
Air tersusun oleh unsur-unsur hidrogen (H2) dan oksigen (O2) dengan perbandingan yang selalu tetap yaitu :
11,91 % : 88,81 % = 1 : 8
Massa H2 (gram) Massa O2 (gram) Massa H2O (gram) Massa zat sisa
1 8 9 -
2 16 18 -
3 16 18 1 gram H2
3 25 27 1 gram O2
4 25 28,125 0,875 gram H2
Contoh soal :
Jika diketahui perbandingan massa besi (Fe) dan belerang (S) dalam pembentukan senyawa besi (II) sulfida (FeS) adalah 7 : 4 maka tentukan :
a) Massa besi yang dibutuhkan untuk bereaksi dengan 8 gram belerang!
b) Massa belerang yang tersisa, jika sebanyak 21 gram Fe direaksikan dengan 15 gram S!
c) Massa S dan massa Fe yang dibutuhkan untuk menghasilkan 22 gram senyawa FeS!
Jawab :
Reaksi :
7 4 11
Massa zat sebelum dan sesudah reaksi adalah sama, sehingga 7 gram Fe akan bereaksi dengan 4 gram S membentuk 11 gram FeS.
a) Massa S = 8 gram
Massa Fe = …?
Massa Fe =
Jadi massa Fe yang dibutuhkan adalah 14 gram.
3). Hukum Kelipatan Perbandingan / Hukum Perbandingan Berganda ( Hukum Dalton ).
Yaitu : “Jika dua jenis unsur dapat membentuk lebih dari satu macam senyawa, maka perbandingan massa salah satu unsur yang terikat pada massa unsur lain yang sama, merupakan bilangan bulat dan sederhana.”
Contoh :
C dan O dapat membentuk dua jenis senyawa, yaitu CO dan CO2. Jika massa C dalam kedua senyawa itu sama (berarti jumlah C sama), maka :
Massa O dalam CO : massa O dalam CO2 akan merupakan bilangan bulat dan sederhana (yaitu = 1:2 ).
Contoh soal :
Karbon dapat bergabung dengan hidrogen dengan perbandingan 3 : 1, membentuk gas metana. Berapa massa hidrogen yang diperlukan untuk bereaksi dengan 900 gram C pada metana?
Jawab :
C : H = 3 : 1 sehingga :
900 : m H = 3 : 1
m H = ; Jadi, massa H yang diperlukan adalah 300 gram.
4). Hukum Perbandingan Volum ( Hukum Gay Lussac ).
Yaitu : “Pada suhu dan tekanan yang sama, perbandingan volum gas-gas yang bereaksi dan hasil reaksi merupakan bilangan bulat dan sederhana.”
Contoh :
Dua volum gas hidrogen bereaksi dengan satu volum gas oksigen membentuk dua volum uap air.
gas hidrogen + gas oksigen --> uap air
2 V 1 V 2 V
Perbandingan volumenya = 2 : 1 : 2
5). Hukum Avogadro.
Yaitu : “Pada suhu dan tekanan yang sama, gas-gas yang volumnya sama mengandung jumlah partikel yang sama pula.”
Contoh :
Pada pembentukan molekul H2O
2L H2(g) + 1L O2(g) --> 2L H2O(g)
2 molekul H2 1 molekul O2 2 molekul H2O
Contoh soal :
Pada suhu dan tekanan yang sama, sebanyak 2 L gas nitrogen (N2) tepat bereaksi dengan gas H2 membentuk gas NH3 (amonia).
Tentukan :
a) Persamaan reaksinya!
b) Volume gas H2 yang diperlukan!
c) Volume gas NH3 yang dihasilkan!
Konsep Mol
a) Definisi Mol
o Satu mol adalah banyaknya zat yang mengandung jumlah partikel yang = jumlah atom yang terdapat dalam 12 gram C-12.
o Mol merupakan satuan jumlah (seperti lusin,gros), tetapi ukurannya jauh lebih besar.
o Mol menghubungkan massa dengan jumlah partikel zat.
o Jumlah partikel dalam 1 mol (dalam 12 gram C-12) yang ditetapkan melalui berbagai metode eksperimen dan sekarang ini kita terima adalah 6,02 x 1023 (disebut tetapan Avogadro, dinyatakan dengan L).
Contoh :
1 mol air artinya : sekian gram air yang mengandung 6,02 x 1023 molekul air.
1 mol besi artinya : sekian gram besi yang mengandung 6,02 x 1023 atom besi.
1 mol asam sulfat artinya : sekian gram asam sulfat yang mengandung 6,02 x 1023 molekul H2SO4.
b) Hubungan Mol dengan Jumlah Partikel
Dirumuskan :
Keterangan :
n = jumlah mol
= jumlah partikel
Contoh soal :
Perhatikan Buku Paket 1A halaman 174!
c) Massa Molar (mm)
o Massa molar menyatakan massa 1 mol zat.
o Satuannya adalah gram mol-1.
o Massa molar zat berkaitan dengan Ar atau Mr zat itu, karena Ar atau Mr zat merupakan perbandingan massa antara partikel zat itu dengan atom C-12.
Contoh :
Ar Fe = 56, artinya : massa 1 atom Fe : massa 1 atom C-12 = 56 : 12
Mr H2O = 18, artinya : massa 1 molekul air : massa 1 atom C-12 = 18 : 12
Karena :
1 mol C-12 = 12 gram (standar mol), maka :
Massa 1 mol atom Fe =
Massa 1 mol molekul air =
Kesimpulan :
Massa 1 mol suatu zat = Ar atau Mr zat tersebut (dinyatakan dalam gram).
d) Hubungan Jumlah Mol (n) dengan Massa Zat (m)
dengan :
= massa
= jumlah mol
= massa molar
Contoh soal :
Perhatikan Buku Paket 1A halaman 177!
e) Volum Molar Gas (Vm)
o Adalah volum 1 mol gas.
o Menurut Avogadro, pada suhu dan tekanan yang sama, gas-gas bervolum sama akan mengandung jumlah molekul yang sama pula.
o Artinya, pada suhu dan tekanan yang sama, gas-gas dengan jumlah molekul yang sama akan mempunyai volum yang sama pula.
o Oleh karena 1 mol setiap gas mempunyai jumlah molekul sama yaitu 6,02 x 1023 molekul, maka pada suhu dan tekanan yang sama, 1 mol setiap gas mempunyai volum yang sama.
o Jadi : pada suhu dan tekanan yang sama, volum gas hanya bergantung pada jumlah molnya.
Dirumuskan :
dengan :
= volum gas
= jumlah mol
= volum molar
Stoikiometri Senyawa
1) Rumus Empiris ( RE )
Disebut juga rumus perbandingan adalah rumus kimia yang menyatakan perbandingan paling sederhana dari atom-atom unsur penyusun senyawa.
2) Rumus Molekul ( RM )
3) Kadar Unsur dalam Senyawa ( dalam % )
Stoikiometri Reaksi
1) Hitungan Kimia Sederhana
Dapat diselesaikan melalui 4 langkah yaitu sebagai berikut :
  • Menuliskan persamaan reaksi kimia yang setara
  • Menyatakan jumlah mol zat yang diketahui
  • Menentukan jumlah mol zat yang ditanyakan dengan menggunakan perbandingan koefisien reaksi
  • Menyesuaikan jawaban dengan pertanyaan
2) Pereaksi Pembatas
o Adalah suatu pereaksi yang habis bereaksi terlebih dahulu.
Contoh :
Reaksi antara Al dengan O2 membentuk aluminium oksida, menurut persamaan reaksi :
Jumlah Mol Pereaksi Jumlah Mol Produk Pereaksi Pembatas Jumlah Mol Pereaksi yang Bersisa
Al O2
4 3 2 Ekivalen -
4 4 2 Aluminium 1 mol oksigen
5 3 2 Oksigen 1 mol aluminium
2 1,5 1 Ekivalen -
0,6 0,4 0,27 Oksigen 0,07 mol aluminium
#Cara menentukan Pereaksi Pembatas :
a) Nyatakan zat yang diketahui dalam mol
b) Bagilah jumlah mol masing-masing zat dengan koefisiennya
c) Pereaksi yang hasil pembagiannya paling kecil, merupakan pereaksi pembatas
3) Hitungan yang Melibatkan Campuran
Jika dari suatu campuran, terjadi lebih dari satu reaksi. maka persamaan reaksinya harus ditulis secara terpisah.
4) Penentuan Rumus Kimia Hidrat
o Hidrat adalah zat padat yang mengikat beberapa molekul air sebagai bagian dari struktur kristalnya.
Contoh :
CuSO4. 5 H2O ( terusi )
CaSO4. 2 H2O ( gipsum )
MgSO4. 7 H2O ( garam Inggris )
Na2CO3. 10 H2O ( soda hablur )